Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 2358, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509128

RESUMO

While excessive production of reactive oxygen species (ROS) is a characteristic hallmark of numerous diseases, clinical approaches that ameliorate oxidative stress have been unsuccessful. Here, utilizing multi-omics, we demonstrate that in cardiomyocytes, mitochondrial isocitrate dehydrogenase (IDH2) constitutes a major antioxidative defense mechanism. Paradoxically reduced expression of IDH2 associated with ventricular eccentric hypertrophy is counterbalanced by an increase in the enzyme activity. We unveil redox-dependent sex dimorphism, and extensive mutual regulation of the antioxidative activities of IDH2 and NRF2 by a feedforward network that involves 2-oxoglutarate and L-2-hydroxyglutarate and mediated in part through unconventional hydroxy-methylation of cytosine residues present in introns. Consequently, conditional targeting of ROS in a murine model of heart failure improves cardiac function in sex- and phenotype-dependent manners. Together, these insights may explain why previous attempts to treat heart failure with antioxidants have been unsuccessful and open new approaches to personalizing and, thereby, improving such treatment.


Assuntos
Insuficiência Cardíaca , Estresse Oxidativo , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Oxirredução , Insuficiência Cardíaca/genética , Cardiomegalia , Epigênese Genética , Isocitrato Desidrogenase/genética
2.
Sci Rep ; 14(1): 5811, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461325

RESUMO

New or mild heart failure (HF) is mainly caused by left ventricular dysfunction. We hypothesised that gene expression differ between the left (LV) and right ventricle (RV) and secondly by type of LV dysfunction. We compared gene expression through myocardial biopsies from LV and RV of patients undergoing elective coronary bypass surgery (CABG). Patients were categorised based on LV ejection fraction (EF), diastolic function and NT-proBNP into pEF (preserved; LVEF ≥ 45%), rEF (reduced; LVEF < 45%) or normal LV function. Principal component analysis of gene expression displayed two clusters corresponding to LV and RV. Up-regulated genes in LV included natriuretic peptides NPPA and NPPB, transcription factors/coactivators STAT4 and VGLL2, ion channel related HCN2 and LRRC38 associated with cardiac muscle contraction, cytoskeleton, and cellular component movement. Patients with pEF phenotype versus normal differed in gene expression predominantly in LV, supporting that diastolic dysfunction and structural changes reflect early LV disease in pEF. DKK2 was overexpressed in LV of HFpEF phenotype, potentially leading to lower expression levels of ß-catenin, α-SMA (smooth muscle actin), and enhanced apoptosis, and could be a possible factor in the development of HFpEF. CXCL14 was down-regulated in both pEF and rEF, and may play a role to promote development of HF.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Ventrículos do Coração , Volume Sistólico/fisiologia , Ecocardiografia , Perfilação da Expressão Gênica , Biópsia , Função Ventricular Esquerda
3.
Cardiovasc Res ; 119(7): 1596-1605, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869765

RESUMO

AIMS: The vascular endothelial growth factor (VEGF) family is involved in pathophysiological mechanisms underlying cardiovascular (CV) diseases. The aim of this study was to investigate the associations between circulating VEGF ligands and/or soluble receptors and CV outcome in patients with acute coronary syndrome (ACS) and chronic coronary syndrome (CCS). METHODS AND RESULTS: Levels of VEGF biomarkers, including bFGF, Flt-1, KDR (VEGFR2), PlGF, Tie-2, VEGF-A, VEGF-C, and VEGF-D, were measured in the PLATO ACS cohort (n = 2091, discovery cohort). Subsequently, VEGF-D was also measured in the STABILITY CCS cohort (n = 4015, confirmation cohort) to verify associations with CV outcomes. Associations between plasma VEGF-D and outcomes were analysed by multiple Cox regression models with hazard ratios (HR [95% CI]) comparing the upper vs. the lower quartile of VEGF-D. Genome-wide association study (GWAS) of VEGF-D in PLATO identified SNPs that were used as genetic instruments in Mendelian randomization (MR) meta-analyses vs. clinical endpoints. GWAS and MR were performed in patients with ACS from PLATO (n = 10 013) and FRISC-II (n = 2952), and with CCS from the STABILITY trial (n = 10 786). VEGF-D, KDR, Flt-1, and PlGF showed significant association with CV outcomes. VEGF-D was most strongly associated with CV death (P = 3.73e-05, HR 1.892 [1.419, 2.522]). Genome-wide significant associations with VEGF-D levels were identified at the VEGFD locus on chromosome Xp22. MR analyses of the combined top ranked SNPs (GWAS P-values; rs192812042, P = 5.82e-20; rs234500, P = 1.97e-14) demonstrated a significant effect on CV mortality [P = 0.0257, HR 1.81 (1.07, 3.04) per increase of one unit in log VEGF-D]. CONCLUSION: This is the first large-scale cohort study to demonstrate that both VEGF-D plasma levels and VEGFD genetic variants are independently associated with CV outcomes in patients with ACS and CCS. Measurements of VEGF-D levels and/or VEGFD genetic variants may provide incremental prognostic information in patients with ACS and CCS.


Assuntos
Síndrome Coronariana Aguda , Doenças Cardiovasculares , Fator D de Crescimento do Endotélio Vascular , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/complicações , Estudos de Coortes , Estudo de Associação Genômica Ampla , Fator A de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/genética
4.
Front Pharmacol ; 13: 827686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548346

RESUMO

The clinical heterogeneity of heart failure has challenged our understanding of the underlying genetic mechanisms of this disease. In this respect, large-scale patient DNA sequencing studies have become an invaluable strategy for identifying potential genetic contributing factors. The complex aetiology of heart failure, however, also means that in vivo models are vital to understand the links between genetic perturbations and functional impacts as part of the process for validating potential new drug targets. Traditional approaches (e.g., genetically-modified mice) are optimal for assessing small numbers of genes, but less practical when multiple genes are identified. The zebrafish, in contrast, offers great potential for higher throughput in vivo gene functional assessment to aid target prioritisation, by providing more confidence in target relevance and facilitating gene selection for definitive loss of function studies undertaken in mice. Here we used whole-exome sequencing and bioinformatics on human patient data to identify 3 genes (API5, HSPB7, and LMO2) suggestively associated with heart failure that were also predicted to play a broader role in disease aetiology. The role of these genes in cardiovascular system development and function was then further investigated using in vivo CRISPR/Cas9-mediated gene mutation analysis in zebrafish. We observed multiple impacts in F0 knockout zebrafish embryos (crispants) following effective somatic mutation, including changes in ventricle size, pericardial oedema, and chamber malformation. In the case of lmo2, there was also a significant impact on cardiovascular function as well as an expected reduction in erythropoiesis. The data generated from both the human in silico and zebrafish in vivo assessments undertaken supports further investigation of the potential roles of API5, HSPB7, and LMO2 in human cardiovascular disease. The data presented also supports the use of human in silico genetic variant analysis, in combination with zebrafish crispant phenotyping, as a powerful approach for assessing gene function as part of an integrated multi-level drug target validation strategy.

5.
Front Cardiovasc Med ; 8: 753470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722683

RESUMO

Objective: After myocardial infarction (MI), the non-infarcted left ventricle (LV) ensures appropriate contractile function of the heart. Metabolic disturbance in this region greatly exacerbates post-MI heart failure (HF) pathology. This study aimed to provide a comprehensive understanding of the metabolic derangements occurring in the non-infarcted LV that could trigger cardiovascular deterioration. Methods and Results: We used a pig model that progressed into chronic HF over 3 months following MI induction. Integrated gene and metabolite signatures revealed region-specific perturbations in amino acid- and lipid metabolism, insulin signaling and, oxidative stress response. Remote LV, in particular, showed impaired glutamine and arginine metabolism, altered synthesis of lipids, glucose metabolism disorder, and increased insulin resistance. LPIN1, PPP1R3C, PTPN1, CREM, and NR0B2 were identified as the main effectors in metabolism dysregulation in the remote zone and were found differentially expressed also in the myocardium of patients with ischemic and/or dilated cardiomyopathy. In addition, a simultaneous significant decrease in arginine levels and altered PRCP, PTPN1, and ARF6 expression suggest alterations in vascular function in remote area. Conclusions: This study unravels an array of dysregulated genes and metabolites putatively involved in maladaptive metabolic and vascular remodeling in the non-infarcted myocardium and may contribute to the development of more precise therapies to mitigate progression of chronic HF post-MI.

6.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166199, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34144091

RESUMO

During diabetes development insulin production and glucose-stimulated insulin secretion (GSIS) are defective due to inflammation-related, yet not fully understood mechanisms. MCPIP1 (monocyte chemotactic protein-induced protein-1) is a strong regulator of inflammation, and acts predominantly as a specific RNase. The impact of MCPIP1 on insulin secretory capacity is unknown. We show that the expression of the ZC3H12A gene, which encodes MCPIP1, was induced by T1DM- and by T2DM-simulating conditions, with a stronger effect of cytokines. The number of MCPIP1-positive pancreatic islet-cells, including beta-cells, was significantly higher in diabetic compared to nondiabetic individuals. In the 3'UTR regions of mRNAs coding for Pdx1 (pancreatic and duodenal homeobox 1), FoxO1 (forkhead box protein O1), and of a novel regulator of insulin handling, Grp94 (glucose-regulated protein 94), MCPIP1-target structures were detected. Overexpression of the wild type MCPIP1wt, but not of the mutant MCPIP1D141N (lacking the RNase activity), decreased the expression of genes involved in insulin production and GSIS. Additionally INS1-E-MCPIP1wt cells exhibited a higher Ire1 (inositol-requiring enzyme 1) expression. MCPIP1wt overexpression blunted GSIS and glucose-mediated calcium influx with no deleterious effects on glucose uptake or glucokinase activity. We identify MCPIP1 as a new common link between diabetogenic conditions and beta-cell failure. MCPIP1 may serve as an interesting target for novel beta-cell protective approaches.


Assuntos
Diabetes Mellitus/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ribonucleases/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus/patologia , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/patologia , RNA Mensageiro/metabolismo , Ratos
7.
J Lipid Res ; 62: 100065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33713671

RESUMO

Plasma cholesterol and triglyceride (TG) levels are twice as high in hibernating brown bears (Ursus arctos) than healthy humans. Yet, bears display no signs of early stage atherosclerosis development when adult. To explore this apparent paradox, we analyzed plasma lipoproteins from the same 10 bears in winter (hibernation) and summer using size exclusion chromatography, ultracentrifugation, and electrophoresis. LDL binding to arterial proteoglycans (PGs) and plasma cholesterol efflux capacity (CEC) were also evaluated. The data collected and analyzed from bears were also compared with those from healthy humans. In bears, the cholesterol ester, unesterified cholesterol, TG, and phospholipid contents of VLDL and LDL were higher in winter than in summer. The percentage lipid composition of LDL differed between bears and humans but did not change seasonally in bears. Bear LDL was larger, richer in TGs, showed prebeta electrophoretic mobility, and had 5-10 times lower binding to arterial PGs than human LDL. Finally, plasma CEC was higher in bears than in humans, especially the HDL fraction when mediated by ABCA1. These results suggest that in brown bears the absence of early atherogenesis is likely associated with a lower affinity of LDL for arterial PGs and an elevated CEC of bear plasma.


Assuntos
Hibernação , Lipoproteínas , Ursidae , Animais , Colesterol/sangue , Lipoproteínas/sangue , Estações do Ano , Ursidae/fisiologia
8.
J Clin Endocrinol Metab ; 105(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830851

RESUMO

CONTEXT: Insulin resistance (IR) is a risk factor for type 2 diabetes, diabetic kidney disease, cardiovascular disease and nonalcoholic steatohepatitis. Biliopancreatic diversion (BPD) is the most effective form of bariatric surgery for improving insulin sensitivity. OBJECTIVE: To identify plasma proteins correlating with the early restoration of insulin sensitivity after BPD. DESIGN: Prospective single-center study including 20 insulin-resistant men with morbid obesity scheduled for BPD. Patient characteristics and blood samples were repeatedly collected from baseline up to 4 weeks postsurgery. IR was assessed by homeostatic model assessment for insulin resistance (HOMA-IR), Matsuda Index, and by studying metabolic profiles during meal tolerance tests. Unbiased proteomic analysis was performed to identify plasma proteins altered by BPD. Detailed plasma profiles were made on a selected set of proteins by targeted multiple reaction monitoring mass spectrometry (MRM/MS). Changes in plasma proteome were evaluated in relation to metabolic and inflammatory changes. RESULTS: BPD resulted in improved insulin sensitivity and reduced body weight. Proteomic analysis identified 29 proteins that changed following BPD. Changes in plasma levels of afamin, apolipoprotein A-IV (ApoA4), and apolipoprotein A-II (ApoA2) correlated significantly with changes in IR. CONCLUSION: Circulating levels of afamin, ApoA4, and ApoA2 were associated with and may contribute to the rapid improvement in insulin sensitivity after BPD.


Assuntos
Desvio Biliopancreático , Resistência à Insulina/fisiologia , Obesidade Mórbida/sangue , Adulto , Glicemia/metabolismo , Índice de Massa Corporal , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Proteômica
9.
Am J Physiol Endocrinol Metab ; 318(6): E892-E900, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255680

RESUMO

Proinsulin is a misfolding-prone protein, and its efficient breakdown is critical when ß-cells are confronted with high-insulin biosynthetic demands, to prevent endoplasmic reticulum stress, a key trigger of secretory dysfunction and, if uncompensated, apoptosis. Proinsulin degradation is thought to be performed by the constitutively expressed standard proteasome, while the roles of other proteasomes are unknown. We recently demonstrated that deficiency of the proinsulin chaperone glucose-regulated protein 94 (GRP94) causes impaired proinsulin handling and defective insulin secretion associated with a compensated endoplasmic reticulum stress response. Taking advantage of this model of restricted folding capacity, we investigated the role of different proteasomes in proinsulin degradation, reasoning that insulin secretory dynamics require an inducible protein degradation system. We show that the expression of only one enzymatically active proteasome subunit, namely, the inducible ß5i-subunit, was increased in GRP94 CRISPR/Cas9 knockout (KO) cells. Additionally, the level of ß5i-containing intermediate proteasomes was significantly increased in these cells, as was ß5i-related chymotrypsin-like activity. Moreover, proinsulin levels were restored in GRP94 KO upon ß5i small interfering RNA-mediated knockdown. Finally, the fraction of ß-cells expressing the ß5i-subunit is increased in human islets from type 2 diabetes patients. We conclude that ß5i is an inducible proteasome subunit dedicated to the degradation of mishandled proinsulin.


Assuntos
Diabetes Mellitus Tipo 2/genética , Estresse do Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Proinsulina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Ilhotas Pancreáticas/metabolismo , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Ratos
10.
Sci Rep ; 9(1): 3179, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816197

RESUMO

Heart failure affects 2-3% of adult Western population. Prevalence of heart failure with preserved left ventricular (LV) ejection fraction (HFpEF) increases. Studies suggest HFpEF patients to have altered myocardial structure and functional changes such as incomplete relaxation and increased cardiac stiffness. We hypothesised that patients undergoing elective coronary bypass surgery (CABG) with HFpEF characteristics would show distinctive gene expression compared to patients with normal LV physiology. Myocardial biopsies for mRNA expression analysis were obtained from sixteen patients with LV ejection fraction ≥45%. Five out of 16 patients (31%) had echocardiographic characteristics and increased NTproBNP levels indicative of HFpEF and this group was used as HFpEF proxy, while 11 patients had Normal LV physiology. Utilising principal component analysis, the gene expression data clustered into two groups, corresponding to HFpEF proxy and Normal physiology, and 743 differentially expressed genes were identified. The associated top biological functions were cardiac muscle contraction, oxidative phosphorylation, cellular remodelling and matrix organisation. Our results also indicate that upstream regulatory events, including inhibition of transcription factors STAT4, SRF and TP53, and activation of transcription repressors HEY2 and KDM5A, could provide explanatory mechanisms to observed gene expression differences and ultimately cardiac dysfunction in the HFpEF proxy group.


Assuntos
Insuficiência Cardíaca/genética , Miocárdio/metabolismo , Transcriptoma/genética , Função Ventricular Esquerda/genética , Idoso , Idoso de 80 Anos ou mais , Biópsia , Diástole , Ecocardiografia , Feminino , Regulação da Expressão Gênica/genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/genética , Miocárdio/patologia , Volume Sistólico/genética
11.
Biochem Pharmacol ; 155: 124-140, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29953844

RESUMO

Primary human hepatocytes (PHH), HepaRG™, HepG2, and two sources of induced pluripotent stem cell (iPSC) derived hepatocytes were characterized regarding gene expression and function of key hepatic proteins, important for the metabolic fate of drugs. The gene expression PCA analysis showed a distance between the two iPSC derived hepatocytes as well as the HepG2 and HepaRG™ cells to the three PHH donors and PHH pool, which were clustered more closely together. Correlation-based hierarchical analysis clustered HepG2 close to the stem cell derived hepatocytes both when the expression of 91 genes related to liver function or only cytochrome P450 (P450) genes were analyzed indicating the non-liver feature and a similar low P450 profile in these cell models. The specific P450 activities and the metabolic pattern of well-characterized drug substances in the cell models demonstrated that iPSC derived hepatocytes had modest levels of CYP3A and CYP2C9, while CYP1A2, 2B6, 2C8, 2C9, 2C19, and 2D6 were barely detectable. High expression of several extrahepatic P450s such as CYP1A1 and 1B1 detected in the stem cell derived hepatocytes may have significant effects on metabolite profiles. However, one of the iPSC derived hepatocytes demonstrated significant combined P450 and conjugating enzyme activity of certain drugs. HepaRG™ cells showed many metabolic properties similar to PHHs and will in many respects be a good model in studies of metabolic pathways and induction of drug metabolism whereas there is still ground to cover before iPSC derived hepatocytes will be seen as a substitute to PHH in drug metabolism studies.


Assuntos
Carcinoma Hepatocelular/metabolismo , Diferenciação Celular/fisiologia , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasias Hepáticas/metabolismo , Preparações Farmacêuticas/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Células Cultivadas , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neoplasias Hepáticas/genética , Preparações Farmacêuticas/administração & dosagem
12.
Diabetes Ther ; 9(4): 1511-1532, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29949016

RESUMO

INTRODUCTION: The sodium-glucose cotransporter 2 inhibitor dapagliflozin and the glucagon-like peptide-1 (GLP-1) receptor agonist exenatide reduce bodyweight via differing and complementary mechanisms. This post hoc analysis investigated the metabolic effects and baseline associations with bodyweight loss on coadministration of dapagliflozin and exenatide once weekly (QW) among adults with obesity and without diabetes. METHODS: In the primary trial, adults with obesity and without diabetes [n = 50; 18-70 years; body mass index (BMI) 30-45 kg/m2] were randomized to double-blind oral dapagliflozin 10 mg (DAPA) once daily plus subcutaneous long-acting exenatide 2 mg QW (ExQW) or placebo over 24 weeks, followed by an open-label extension from 24-52 weeks during which all participants received active treatment. Primary results have been published previously. This analysis evaluated: (1) the effects of DAPA + ExQW on changes in substrates [free fatty acids (FFAs), glycerol, beta-OH-butyrate, and glucose], hormones (glucagon and insulin), and insulin secretion [insulinogenic index (IGI)] via an oral glucose tolerance test (OGTT) and (2) associations between bodyweight loss and baseline characteristics (e.g., BMI), single-nucleotide polymorphisms (SNPs) associated with the GLP-1 pathway, and markers of glucose regulation. RESULTS: Compared with placebo at 24 weeks, 2-h FFAs post-OGTT increased (mean difference, +20.4 µmol/l; P < 0.05), and fasting glucose, 2-h glucose post-OGTT, and glucose area under the concentration-time curve (AUC) decreased with DAPA + ExQW [mean differences, -0.68 mmol/l [P < 0.001], -2.20 mmol/l (P < 0.01), and -306 mmol/l min (P < 0.001), respectively]. Glucagon, glycerol, beta-OH-butyrate, and IGI did not differ by treatment group at 24 weeks. Over 52 weeks, DAPA + ExQW decreased fasting insulin, 2-h post-OGTT insulin, and insulin AUC. Among DAPA + ExQW-treated participants, for each copy of the SNP variant rs10010131 A allele (gene WFS1), bodyweight decreased by 2.4 kg (P < 0.05). Lower BMI and a lower IGI were also associated with greater bodyweight loss with DAPA + ExQW. CONCLUSIONS: Metabolic effects with DAPA + ExQW included less FFA suppression versus placebo during the OGTT, suggesting compensatory lipid mobilization for energy production when glucose availability was reduced because of glucosuria. The expected increase in glucagon with DAPA did not occur with DAPA + ExQW coadministration. Bodyweight loss with DAPA + ExQW was associated with the SNP variant rs10010131 A allele, lower baseline adiposity (BMI), and lower baseline insulin secretion (IGI). These findings require further validation. FUNDING: AstraZeneca.

13.
Am J Physiol Gastrointest Liver Physiol ; 313(2): G129-G137, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495802

RESUMO

Na+/H+ exchanger NHE3 mediates the majority of intestinal and renal electroneutral sodium absorption. Dysfunction of NHE3 is associated with a variety of diarrheal diseases. We previously reported that the NHE3 gene (SLC9A3) has more than 400 single-nucleotide polymorphisms (SNPs) but few nonsynonymous polymorphisms. Among the latter, one polymorphism (rs2247114-G>A), which causes a substitution from arginine to cysteine at amino acid position 799 (p.R799C), is common in Asian populations. To improve our understanding of the population distribution and potential clinical significance of the NHE3-799C variant, we investigated the frequency of this polymorphism in different ethnic groups using bioinformatics analyses and in a cohort of Japanese patients with cardiovascular or renal disease. We also characterized the function of human NHE3-799C and its sensitivity to regulatory ligands in an in vitro model. NHE3-799C had an allele frequency of 29.5-57.6% in Asian populations, 11.1-23.6% in European populations, and 10.2-22.7% in African populations. PS120/FLAG-NHERF2 fibroblasts stably expressing NHE3-799C had lower total protein expression but a higher percentage of surface expression than those expressing NHE3-799R. NHE3-799C had similar basal activity to NHE3-799R and was similarly stimulated or inhibited, by serum or forskolin, respectively. Tenapanor, a small-molecule NHE3 inhibitor, dose-dependently inhibited NHE3-799R and NHE3-799C activities. The IC50 values of tenapanor for NHE3-799C and NHE3-799R were significantly different, but both were in the nanomolar range. These results suggest that NHE3-799C is a common variant enriched in Asian populations, is not associated with compromised function or abnormal regulation, and is unlikely to contribute to clinical disease.NEW & NOTEWORTHY This study reports results on the functional significance of human NHE3-799C under basal conditions and in response to regulatory ligands, including a novel NHE3 inhibitor called tenapanor. We demonstrate that NHE3-799C is a common variant of NHE3 that is enriched in Asian populations; however, in contrast to our previous studies using rabbit NHE3, its presence seems to have limited clinical significance in humans and is not associated with compromised function or abnormal transport regulation.


Assuntos
Alelos , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Trocadores de Sódio-Hidrogênio/genética , Povo Asiático/genética , Doenças Cardiovasculares/genética , Biologia Computacional , Genótipo , Humanos , Nefropatias/genética , Mutação , Trocador 3 de Sódio-Hidrogênio , População Branca/genética
14.
PLoS One ; 6(4): e19095, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21552517

RESUMO

Gastro-esophageal reflux disease (GERD) is partly caused by genetic factors. The underlying susceptibility genes are currently unknown, with the exception of COL3A1. We used three independent GERD patient cohorts to identify GERD susceptibility genes. Thirty-six families, demonstrating dominant transmission of GERD were subjected to whole genome microsatellite genotyping and linkage analysis. Five linked regions were identified. Two families shared a linked region (LOD 3.9 and 2.0) on chromosome 16. We used two additional independent GERD patient cohorts, one consisting of 219 trios (affected child with parents) and the other an adult GERD case control cohort consisting of 256 cases and 485 controls, to validate individual genes in the linked region through association analysis. Sixty six single nucleotide polymorphism (SNP) markers distributed over the nine genes present in the linked region were genotyped in the independent GERD trio cohort. Transmission disequilibrium test analysis followed by multiple testing adjustments revealed a significant genetic association for one SNP located in an intron of the gene 4-aminobutyrate aminotransferase (ABAT) (P(adj) = 0.027). This association did not replicate in the adult case-control cohort, possibly due to the differences in ethnicity between the cohorts. Finally, using the selective ABAT inhibitor vigabatrin (γ-vinyl GABA) in a dog study, we were able to show a reduction of transient lower esophageal sphincter relaxations (TLESRs) by 57.3 ± 11.4 % (p = 0.007) and the reflux events from 3.1 ± 0.4 to 0.8 ± 0.4 (p = 0.007). Our results demonstrate the direct involvement of ABAT in pathways affecting lower esophageal sphincter (LES) control and identifies ABAT as a genetic risk factor for GERD.


Assuntos
4-Aminobutirato Transaminase/genética , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/genética , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Cães , Esfíncter Esofágico Inferior/metabolismo , Esfíncter Esofágico Inferior/fisiopatologia , Feminino , Refluxo Gastroesofágico/fisiopatologia , Ligação Genética , Predisposição Genética para Doença , Humanos , Masculino , Reprodutibilidade dos Testes , Análise de Sequência de DNA
15.
Mol Carcinog ; 48(2): 150-5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18649354

RESUMO

Animal cancer models reduce genetic background heterogeneity and thus, may facilitate identification and analysis of specific genetic aberrations in tumor cells. Rat and human mammary glands have high similarity in physiology and show comparable hormone responsiveness. Thus, spontaneous and carcinogen (e.g., NMU and DMBA)-induced rat mammary models are valuable tools for genetic studies of breast cancer. In NMU-induced rat mammary tumors, activating mutations in Hras codon 12 have frequently been reported and are supposed to contribute to the mammary carcinogenic process. Involvement of Ras mutations in DMBA-induced tumors is less clear. In the present study we investigated the mutation status of the three Ras genes, Hras, Kras, and Nras, in DMBA-induced rat mammary tumors. We examined codons 12, 13, and 61 of all three genes for mutations in 71 tumors using direct sequencing method that in experimental conditions is sensitive enough to detect single nucleotide mutations even when present in only 25% of the test sample. No activating Ras gene mutation was found. Thus, in contrast to NMU-induced rat mammary tumor, tumorigenesis in DMBA-induced rat mammary tumors seems to be independent on activating mutations in the Ras genes. Our finding suggests that the genetic pathways selected in mammary tumor development are influenced by and perhaps dependent on the identity of the inducing agent, again emphasizing the importance of tumor etiology on the genetic changes in the tumor cells.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Carcinógenos/toxicidade , Genes ras , Neoplasias Mamárias Experimentais/genética , Mutação , Animais , Códon , Feminino , Neoplasias Mamárias Experimentais/induzido quimicamente , Ratos
16.
Cancer Genet Cytogenet ; 157(2): 97-103, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15721629

RESUMO

Analysis of allelic imbalance at polymorphic marker loci is usually employed to identify chromosomal regions affected by recurrent aberrations in tumor genomes. Such regions are likely to harbor genes involved in the onset and/or progression of cancer. Although often used to identify regions of loss of heterozygosity caused by deletions/rearrangements near tumor suppressor gene loci, allelic imbalance can also reflect regional amplification, indicating the presence of oncogenes. It is difficult to tell these two situations apart after ordinary polymerase chain reaction (PCR), but here we describe a method that distinguishes allelic loss from allelic gain. The level of allelic imbalance was determined by quantitative PCR (QPCR) in the presence of an internal control DNA that displayed a third allele at the locus studied. To validate the efficiency of allele quantitation, we analyzed an amplified region in a set of rat fibrosarcomas. In four tumor samples with amplification of the Met oncogene, we could show with QPCR that there was amplification of one of the alleles at a microsatellite marker located close to Met. QPCR may be useful for cancer studies because experiments may be predesigned for using either suitable microsatellite markers or the abundant and polymorphic poly-A tails of rodent identifier sequences.


Assuntos
Desequilíbrio Alélico , Fibrossarcoma/genética , Repetições de Microssatélites , Reação em Cadeia da Polimerase/métodos , Animais , Dosagem de Genes , Polimorfismo de Fragmento de Restrição , Ratos , Ratos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...